

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results Set-up Analytical Results Simulation 1 Simulation 2

Conclusions

References

Collaborative Image Triage with Humans and Computer Vision

Addison Bohannon Applied Math, Statistics, & Scientific Computing

Advisors:

Vernon Lawhern Army Research Laboratory Brian Sadler Army Research Laboratory

May 3, 2016

Outline

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results Set-up Analytical Results Simulation 1 Simulation 2

Conclusions

References

1 Introduction

2 Approach

- Image Assignment
- Joint Classification
- System Design

3 Results

- Set-up
- Analytical Results

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

= nar

- Simulation 1
- Simulation 2

4 Conclusions

Motivation

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results

Set-up Analytical Results Simulation 1 Simulation 2

Conclusions

References

We want to triage a large database of unlabeled images:

Our purpose is motivated by DOD imagery intelligence requirements, but other people are interested in this and similar problems:

Google Images, Facebook, Galaxy Zoo, fold.it

- This could be fully automated by computer vision algorithms, but they require:
 - Training data (lots) and time (lots); or
 - Knowledge of the generating process of the data
- This could be done by humans, but...
 - Humans take a lot of time to classify images
 - Task may require expertise or security clearance
 - Humans require salary, benefits, pension, etc.

Related Work How to triage a large image database

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results

- Set-up Analytical Results Simulation 1 Simulation 2
- Conclusions
- References

Human augmentation

- Rapid Serial Visual Presentation (RSVP) for image labeling [Bigdely-Shamlo et al., 2008]
- Human-machine systems
 - Serialize RSVP analyst and computer vision (CV) algorithm [Sajda et al., 2010]
 - Automate image labeling with CV which can query a human analyst for binary decisions [Joshi et al., 2012]

Crowd-sourcing

- Intelligent control of a system which dynamically scales human participants [Kamar et al., 2012]
- Homogeneous human agents whose voting reliability is learned [Karger et al., 2014]
- Heterogeneous human agents intelligently assigned heterogeneous tasks [Ho et al., 2013]

Research Objective

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results

Set-up Analytical Results Simulation 1 Simulation 2

Conclusions

References

■ Goal: To design and implement in software an image triage system which leverages an ensemble of heterogeneous agents to achieve the accuracy of a naive parallel implementation in significantly less wall time.

Problem Statement:

- How to optimally distribute images among agents?
- How to combine responses from multiple agents?
- How to design a software system which can support heterogeneous image labeling interfaces in parallel?

Schedule

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results

Set-up Analytical Results Simulation 1 Simulation 2

Conclusions

References

Develop Joint Classification Module (Summer 2015)

- Implement Spectral Meta-Learner algorithm
- Develop Assignment Module (15 OCT 4 DEC)
 - Implement branch and bound algorithm (6 NOV)
 - Validate branch and bound algorithm (25 NOV)
 - Mid-year review (14 DEC)
- Build Image Labeling System (25 JAN 26 FEB)
 - Build base classes
 - Develop message-passing interface
 - Integrate all components into a system (26 FEB)
- Test Image Labeling System (26 FEB 15 APR)
 - Testing (1 APR)
- Conclusion (15 APR 13 MAY)
 - Final presentation (3 MAY)
 - Final report (13 May)

Generalized Assignment Problem

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results Set-up Analytical Results Simulation 1 Simulation 2

Conclusions References On iteration k, we seek the optimal assignment of n images among m agents–with a fixed budget, b_j^k , and reliability, r_j^k –where each assignment has a unique value, v_{ji}^k , and cost, c_{ji} [Kundakcioglu and Alizamir, 2008]:

$$Z = \max_{\mathbf{x}} \sum_{i \in I} \sum_{j \in J} v_{ji}^k x_{ji} \quad \text{s.t.}$$
(1)

$$\begin{array}{l} 1 \quad \sum_{i \in I} c_{ji} x_{ji} \leq b_{j}^{\kappa}, \ j \in J \\ \\ 2 \quad \sum_{j \in J} x_{ji} = 1, \ i \in I \\ \\ 3 \quad x_{ji} \in \{0, 1\} \\ \\ 4 \quad c_{ji}, \ b_{i}^{\kappa} \in \mathbb{Z}_{+} \end{array}$$

5
$$v_{ji}^k = r_j^k - s_i^k + \max_{i \in I} s_i^k$$

- 0-1 integer linear problem
- NP-hard
- Known solution techniques

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Branch and Bound Algorithm

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results Set-up Analytical Results

Simulation 1 Simulation 2

Conclusions

References

Algorithm 1: Branch & Bound Data: Z₀ Result: x $Z = Z_0$, queue = p_0 ; while queue $\neq \emptyset$ do Select $p^i \in queue$ for $i \in J$ do $Z_i^i = bound(p_i^i);$ if $Z_i^i > Z$ then if x_i is feasible then $x = x_i^i, \ Z = Z_i^i$ else add p_i^i to queue end end end end

Figure: Visualization of branch and bound (B&B) algorithm. Nodes along the *m*-nary search tree represent sub-problems $(p_i^i \sim x_{ji} = 1).$

Bounding Function

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results Set-up Analytical Results Simulation 1 Simulation 2

Conclusions

References

We introduce the dual problem [Fisher, 2004],

$$d(\boldsymbol{\lambda}) = \max_{\mathbf{x}} \sum_{i \in I} \sum_{j \in J} v_{ji} x_{ji} - \sum_{i \in I} \lambda_i (1 - \sum_{j \in J} x_{ji}),$$

to define our bounding function,

$$\min_{oldsymbol{\lambda}} d(oldsymbol{\lambda}) \geq Z \geq Z_{\mathit{feasible}}$$

Then, we solve the saddle-point problem directly via sub-gradient descent [Boyd and Vandenberghe, 2004]:

$$\mathbf{x}^{k+1} = \arg\max_{\mathbf{x}} \sum_{i \in I} \sum_{j \in J} (v_{ji} - \lambda_i^k) x_{ji} \quad \text{s.t.} \quad \sum_{i \in I} c_{ji} x_{ji} \le b_j$$
$$\lambda_i^{k+1} = \lambda_i^k + \alpha_k \left(1 - \sum_{j \in J} x_{ji} \right)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Validation Generalized Assignment Problem Solvers

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results Set-up

Analytical Results Simulation 1 Simulation 2

Conclusions

References

Feasibility

Solver	Probability
Sub-gradient	1.0
Multiplier	1.0
Greedy	1.0
MATLAB	0.07

Time Complexity

Maximum Likelihood Estimation Spectral Meta-Learner

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results Set-up Analytical Results Simulation 1 Simulation 2

Conclusions

References

Consider the set of decisions from *m* agents for a single image *i*, $\mathbf{A}^i : \{-1, 1\}^m \to \mathbb{R}$. We seek the decision rule which maximizes $\mathbb{P}(d(\mathbf{A}^i) = y_i)$:

$$d(\mathbf{a}^i) = \operatorname*{arg\,max}_{y_i \in \{-1,1\}} \sum_{j \in J} \log \mathbb{P}_{\mathcal{A}^i_j | Y}(a^i_j | y_i),$$

where $Y : \{-1, 1\} \to \mathbb{R}$ is the true label of an image [Dawid and Skene, 1979]. Let $\pi_j = \frac{1}{2}(\psi_j + \eta_j)$, where $\psi_j = \mathbb{P}(a_j = 1 | y_i = 1)$ and $\eta_j = \mathbb{P}(a_j = -1 | y_i = -1)$, then the decision rule is equivalent to

$$d(\mathbf{a}^{i}) = \operatorname{sign} \sum_{j=1}^{m} a_{j}^{i} \left(\log \alpha_{j} + \log \beta_{j} \right),$$

where $\alpha_j = \frac{\psi_j \eta_j}{(1-\psi_j)(1-\eta_j)}$ and $\beta_j = \frac{\psi_j(1-\psi_j)}{\eta_j(1-\eta_j)}$ [Parisi et al., 2014].

Joint Classification

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach Image Assignment Joint Classification System Design

Results Set-up Analytical Results Simulation 1 Simulation 2

Conclusions

References

This provides three results:

- **1** Class label of each image, $sign(d(\mathbf{a}^i))$
- 2 Confidence of the MLE estimate of each image, $s_i = |d(\mathbf{a}^i)|$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

3 Reliability of each agent, $r_j = \pi_j = \frac{1}{2}(\psi_j + \eta_j)$

Software Map

Figure: Visualization of the software design of the image triage system. Architecture prioritizes software flexibility and independent operation for a network of distributed agents. (日)

э

Process Flow

A. Bohannon

Introduction

Approach Image Assignment Joint Classification System Design

Results Set-up Analytical Results Simulation 1 Simulation 2

Conclusions

References

Figure: Visualization of process flow on central server. Asynchronous read operations facilitate **parallel** classification among distributed agents.

Convergence Considerations

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach Image Assignment Joint Classification System Design

Results Set-up Analytical Results Simulation 1 Simulation 2

Conclusions

References

The following methods are implemented to address instability in the system as a result of feedback¹:

- Soft barrier to duplicate assignment, $v_{ji} = 0$
- Dynamic budget, $b_j^k = \frac{L_k}{\mu_j}$
- Monotonically increasing interval length, $L_{k+1} \ge L_k$
- Maximum interval length, $L_k \leq L_{max}$
- Alternative stopping condition (pseudo-infeasibility)

Definition

The system achieves **convergence** when all images achieve threshold confidence, or the alternative stopping condition is reached.

¹L is the interval length, and μ_j is the throughput rate of an agent.

Simulation Set-up I

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results

Set-up Analytical Results Simulation 1 Simulation 2

Conclusions

References

Software: MATLAB R2015a

- Hardware: Unix-based desktop, two Intel Xeon 2.67 GHz processors, 8 cores (independent instance of MATLAB for each agent)
 - Data: Simulated, 30 trials, 6 agents, 200 images

Туре	Accuracy (p _j)	Cost (Cji)	Service Time (μ_j)
CV	0.75	1	0.01s
RSVP	0.85	1	0.1s
Human	0.95	1	1.0s

Table: Properties of agents used for all simulations. Labels generated by Bernoulli process, $f_{A_j|Y}(a_j|y) \sim bern(p_j)$. Service times generated by exponential random variable, $T_j \sim exp(\mu_j)$

Simulation Set-up II

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results

Set-up Analytical Results Simulation 1 Simulation 2

Conclusions

References

Assignment conditions:

- Naive (control) all images assigned to all agents in parallel in a single batch.
- GAP-2 images assigned in parallel according to GAP; images classified if confidence meets or exceeds two, s_i ≥ 2.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- **GAP-3** same as GAP-2, $s_i \ge 3$.
 - GAP-4 same as GAP-2, $s_i \ge 4$.
- Agent ensembles:
 - Computer vision ($CV \times 6$)
 - $\blacksquare \text{ Mixed } (CV \times 2, RSVP \times 2, H \times 2)$

```
Human (H \times 6)
```


Expected Performance of Naive Assignment

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results

Set-up Analytical Results

Simulation 1 Simulation 2

Conclusions

References

Balanced accuracy [Parisi et al., 2014]

$$R \geq \max_{j \in J} R_j - \epsilon(|J|)$$

Wall time

$$f_{\mathcal{T}}(t) = \frac{\partial}{\partial t} \mathbb{P}(\max_{j \in J} T_j \le t) = \frac{\partial}{\partial t} \mathbb{P}(T_1 \le t, \dots, T_m \le t)$$
$$= \frac{\partial}{\partial t} \mathbb{P}(T_1 \le t) \cdots \mathbb{P}(T_m \le t)$$
$$= \frac{\partial}{\partial t} \prod_{j \in J} F_{T_j}(t)$$
$$= \left(\prod_{j \in J} F_{T_j}(t)\right) \sum_{j \in J} \frac{f_{T_j}(t)}{F_{T_j}(t)}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Analytical Results of Naive Assignment

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results

Set-up Analytical Results Simulation 1 Simulation 2

Conclusions

References

Agent Ensemble	Accuracy (π)	Wall Time (7)
CV	0.75	$\textbf{2.2}\pm\textbf{0.1s}$
Mixed	0.95	$208.0\pm12.0\text{s}$
Human	0.95	$\textbf{218.3} \pm \textbf{9.7s}$

Table: Analytical Results of naive assignment condition across agent ensembles. These results provide a performance ceiling to which we can compare the simulation results of the mixed ensemble GAP assignment conditions.

・ コット (雪) (小田) (コット 日)

Assignment Conditions Results (Mixed Ensemble) Analysis of Variance

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach Image Assignment Joint Classification System Design

Results Set-up Analytical Results Simulation 1 Simulation 2

Conclusions

References

(a) Balanced Accuracy

(b) Wall Time

Figure: One-way analysis of variance (ANOVA) of the performance of heterogeneous agent ensembles across assignment conditions reveals significance in both the balanced accuracy (F(3, 116) = 8.8, $p = 2.6 \times 10^{-5}$) and wall time (F(3, 116) = 186.5, $p < 1.0 \times 10^{-9}$).

Assignment Conditions Results (Mixed Ensemble) Summary Statistics

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results Set-up Analytical Results Simulation 1 Simulation 2

Conclusions References

Condition	Accuracy	Wall Time	Assignments
Naive	0.988 ± 0.011	204.1 ± 7.9	1200
GAP-2	$0.974 \pm 0.014^{*,**}$	$124.1\pm19.3^{\star}$	$879.9 \pm 16.3^{\star}$
GAP-3	$0.975 \pm 0.011^{*,**}$	$147.9\pm21.8^{\ast}$	$983.1 \pm 15.1^{*}$
GAP-4	$0.978 \pm 0.011^{*,**}$	$\textbf{204.4} \pm \textbf{12.3}$	$1047.6\pm6.4^{\star}$

Table: Performance of heterogeneous agent ensemble across assignment conditions (* significantly different from naive assignment condition under multiple comparisons test, p < 0.001; ** achieved or exceeded the expected accuracy of the naive condition, one-sample T-test, p < 0.001). The mean of the GAP-2 condition achieves a 1.6× speed-up over the mean of the naive condition, while the GAP-3 achieves a 1.4× speed-up.

Agent Ensemble Results (GAP-2 Assignment) Analysis of Variance

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach Image Assignment Joint Classification System Design

Results Set-up Analytical Results Simulation 1 Simulation 2

Conclusions References

(a) Balanced Accuracy

Figure: ANOVA of the performance of GAP-2 assignment condition across agent ensembles reveals significance in both balanced accuracy (F(2, 87) = 255.47, $p < 1.0 \times 10^{-9}$) and wall time (F(2, 87) = 2667.44, $p < 1.0 \times 10^{-9}$).

Agent Ensemble Results (GAP-2 Assignment) Summary Statistics

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results Set-up Analytical Results Simulation 1 Simulation 2

Conclusions References

Ensemble	Accuracy	Wall Time	Assignments
CV	$\textbf{0.898} \pm \textbf{0.030}$	$6.3\pm0.3 \text{s}$	913.8 ± 13.8
Mixed	0.974 ± 0.014	$124.1\pm19.3 \text{s}$	$\textbf{879.9} \pm \textbf{16.3}$
Human	0.999 ± 0.003	$\textbf{294.2} \pm \textbf{18.3s}$	770.1 ± 7.2

Table: Performance of GAP-2 assignment condition across all agent ensembles. The balanced accuracy and wall time of all ensembles are significantly different from all other ensembles under a multiple comparisons test, $p < 1.0 \times 10^{-9}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusions

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results

Set-up Analytical Results Simulation 1 Simulation 2

Conclusions

References

■ For naive assignment, a mixed ensemble increases the lower bound of accuracy over that of a computer vision ensemble

Results in a 100× increase in wall time

- GAP conditions achieve or exceed the lower bound of accuracy for the naive mixed ensemble
 - Represent a significant speed-up over the naive parallel implementation (GAP-2: 1.6×, GAP-3: 1.4×)
 - Achieves rapid convergence by making fewer assignments
 - In simulation, the mixed ensemble naive assignment condition significantly exceeds its lower bound (one-sample T-test, $p < 1.0 \times 10^{-9}$)
 - Simulated agents achieve true conditional independence
 - Unlikely to happen in real-world application
 - Indicates an increased importance of independent agents such as humans

References I

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results

Set-up Analytical Results Simulation 1 Simulation 2

Conclusions

References

Bigdely-Shamlo, N., Vankov, A., Ramirez, R. R., and Makeig, S. (2008). Brain activity-based image classification from rapid serial visual presentation. *Neural Systems and Rehabilitation Engineering, IEEE Transactions on*, 16(5):432–441.

Boyd, S. and Vandenberghe, L. (2004). *Convex optimization*. Cambridge university press.

- Dawid, A. P. and Skene, A. M. (1979). Maximum likelihood estimation of observer error-rates using the em algorithm. *Applied statistics*, pages 20–28.
- Fisher, M. L. (2004). The Lagrangian Relaxation Method for Solving Integer Programming Problems. *Management Science*, 50(12_supplement):1861–1871.
- Ho, C.-j., Jabbari, S., and Vaughan, J. W. (2013). *Adaptive Task Assignment for Crowdsourced Classification.*
- Joshi, A. J., Porikli, F., and Papanikolopoulos, N. P. (2012). Scalable active learning for multiclass image classification. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 34(11):2259–2273.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

References II

Collaborative Image Triage with Humans and Computer Vision

A. Bohannon

Introduction

Approach

Image Assignment Joint Classification System Design

Results Set-up

Analytical Results Simulation 1 Simulation 2

Conclusions

References

 Kamar, E., Hacker, S., and Horvitz, E. (2012). Combining human and machine intelligence in large-scale crowdsourcing. In *Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems-Volume 1*, pages 467–474. International Foundation for Autonomous Agents and Multiagent Systems.

Karger, D. R., Oh, S., and Shah, D. (2014). Budget-Optimal Task Allocation for Reliable Crowdsourcing Systems. *Operations Research*, 62(1):1–24.

Kundakcioglu, O. E. and Alizamir, S. (2008). Generalized Assignment Problem. In Floudas, C. A. and Pardalos, P. M., editors, *Encyclopedia* of Optimization, pages 1153–1162. Springer US.

Parisi, F., Strino, F., Nadler, B., and Kluger, Y. (2014). Ranking and combining multiple predictors without labeled data. *Proceedings of the National Academy of Sciences*, 111(4):1253–1258.

Sajda, P., Pohlmeyer, E., Wang, J., Parra, L., Christoforou, C., Dmochowski, J., Hanna, B., Bahlmann, C., Singh, M., and Chang, S.-F. (2010). In a Blink of an Eye and a Switch of a Transistor: Cortically Coupled Computer Vision. *Proceedings of the IEEE*, 98(3):462–478.